

Microsoft Research 微软亚洲研究院

Personalized News Recommendation with Candidate-aware User Modeling

Tao Qi¹, Fangzhao Wu², Chuhan Wu¹, Yongfeng Huang¹

¹Department of Electronic Engineering, Tsinghua University, Beijing 100084, China ²Microsoft Research Asia, Beijing 100080, China taoqi.qt@gmail.com

User Modeling For News Recommendation

- Accurate modeling of user interest is important for news recommendation
- Users usually have multiple interest in different fields

The matching between candidate news and user interest.

User Modeling For News Recommendation

• Most existing methods model user interest in a candidate-agnostic way

Challenges

• Difficult to accurately match a candidate news with a specific user interest 3

CAUM: Candidate-aware User Modeling

• A candidate news-aware user modeling framework for news recommendation

- Candidate-aware self-attention network
 - Long-term user interest modeling
- Candidate-aware CNN network
 - Short-term user interest modeling
- Candidate-aware attention network
 - User interest representation aggregation

Candidate-aware Self-Attention

• Model long-term interest from candidate-aware global behavior contexts

Global behavior contexts modeling

•
$$\hat{r}_{i,j}^k = \boldsymbol{q}_i^T \boldsymbol{W}_k^r \boldsymbol{c}_j, \quad \boldsymbol{q}_i = \boldsymbol{Q}_u \boldsymbol{c}_i$$

Candidate news information fusion

•
$$r_{i,j}^k = \hat{r}_{i,j}^k + \boldsymbol{q}_c^T \boldsymbol{W}_k^r \boldsymbol{c}_j, \quad \boldsymbol{q}_c = \boldsymbol{Q}_c \boldsymbol{n}^c$$

• Build global contextual click representations

•
$$l_{i}^{k} = W_{o}^{k} \sum_{j=1}^{N} \gamma_{j}^{k} c_{j}$$
,
• $\gamma_{j}^{k} = \exp(r_{i,j}^{k}) / \sum_{p=0}^{N} \exp(r_{i,p}^{k})$,
• $l_{i} = [l_{i}^{1}, l_{i}^{2} ..., l_{i}^{K}]$,

Candidate-aware CNN Network

• Model short-term interest from candidate-aware local behavior contexts

• Model relatedness between candidate news and local contexts via CNN filters

•
$$s_i = W_c[c_{i-w}, ..., c_i, ..., c_{i+w}, n^c]$$

Candidate-aware Attention Network

• Learn unified candidate-aware user representation from important clicks

• Aggregate clicks relevant to candidate news

•
$$a_i = \Phi(\mathbf{m}_i, \mathbf{n}^c)$$
, where Φ is MLP

•
$$\boldsymbol{u} = \sum_{i=1}^{N} \alpha_i \boldsymbol{m}_i$$
, $\alpha_i = \frac{\exp(a_i)}{\sum_{j=1}^{N} \exp(a_j)}$

Experimental Datasets

- MIND:
 - A public news recommendation dataset based on Microsoft News
 - Constructed by user logs from 2019.10.19 to 2019.11.15 (6 weeks)
- NewsApp:
 - A news recommendation dataset based on user logs in a Microsoft news App
 - Constructed by user logs from 2020.01.23 to 2020.04.23 (13 weeks)

	MIND	NewsApp
# News	161,013	1,126,508
# Users	1,000,000	50,605
# Topic Categories	18	28
Avg. # clicks of a user	24.2	19.4
Avg. # words in news title	11.78	11.90
Avg. # entities in news title	2.86	0.99

Performance Evaluation

	MIND			NewsApp				
	AUC	MRR	nDCG@5	nDCG@10	AUC	MRR	nDCG@5	nDCG@10
GRU [10]	65.69 ± 0.15	31.47 ± 0.06	33.96 ± 0.07	39.70 ± 0.07	63.23±0.37	27.83 ± 0.26	31.84 ± 0.31	37.41 ± 0.34
NAML [20]	66.49 ± 0.19	32.38 ± 0.13	35.17 ± 0.15	$40.84 {\pm} 0.14$	64.52 ± 0.35	29.02 ± 0.20	33.35 ± 0.30	38.90 ± 0.33
NPA [21]	66.56 ± 0.18	32.42 ± 0.10	35.20 ± 0.11	40.87 ± 0.13	64.39 ± 0.14	28.93 ± 0.10	33.31 ± 0.11	38.83 ± 0.11
NRMS [24]	68.04 ± 0.20	33.31 ± 0.07	36.23 ± 0.15	$41.92 {\pm} 0.12$	65.36 ± 0.28	29.47 ± 0.21	33.96 ± 0.27	39.49 ± 0.19
LSTUR [1]	68.36 ± 0.22	33.30 ± 0.11	36.30 ± 0.16	$42.00 {\pm} 0.14$	65.18 ± 0.23	29.28 ± 0.21	$33.71 {\pm} 0.23$	39.28 ± 0.22
<i>KRED</i> [8]	67.73 ± 0.13	32.87 ± 0.11	35.81 ± 0.13	$41.43 {\pm} 0.15$	65.45 ± 0.14	29.56 ± 0.09	34.11 ± 0.11	39.65 ± 0.12
DKN [19]	66.32 ± 0.18	32.13 ± 0.14	34.86 ± 0.13	$40.47 {\pm} 0.18$	62.86 ± 0.37	28.00 ± 0.23	32.12 ± 0.29	37.68 ± 0.28
HiFi-Ark [9]	67.93 ± 0.25	32.87 ± 0.07	35.77 ± 0.08	$41.47 {\pm} 0.10$	64.91±0.15	29.10 ± 0.12	33.52 ± 0.18	$38.98 {\pm} 0.14$
<i>FIM</i> [18]	$67.84 {\pm} 0.12$	33.26 ± 0.06	36.18 ± 0.10	41.86 ± 0.11	65.39 ± 0.10	29.63 ± 0.11	$34.14 {\pm} 0.12$	$39.60 {\pm} 0.10$
GNewsRec [3]	68.36 ± 0.22	33.41 ± 0.10	36.36 ± 0.13	42.01 ± 0.14	65.31±0.22	29.40 ± 0.14	33.92 ± 0.16	39.48 ± 0.16
CAUM	70.04±0.08	34.71 ±0.08	37.89 ±0.07	43.57 ±0.07	66.44 ±0.07	30.07 ±0.10	34.69 ±0.12	40.23 ±0.10

CAUM significantly outperforms baseline user modeling methods at level $p \leq 0.01$.

Ablation Study

Effectiveness of different modules in CAUM.

Analysis on Model Efficiency

Normalized

inference time of different methods	

Method	Time Complexity
NAML	$O(Md + Nd^2)$
GRU	$O(Md + Nd^2)$
LSTUR	$O(Md + Nd^2)$
NRMS	$O(3Nd^2 + N^2d + Md)$
CAUM	$O((3N+M)d^2 + (N^2 + MN)d)$

Method time complexity of calculating matching scores of M candidate news.

Conclusion

• A candidate-aware user modeling framework for news recommendation.

Tao Qi taoqi.qt@gmail.com