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Federated Learning

* A promising privacy-preserving machine learning framework
* Collaborative model learning with decentralized data
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Client Sampling in Federated Learning

 Client sampling is a key step for existing federated learning methods

* Uniform client sampling: Algorithm 1 FEDOPT

1: Input: zg, CLIENTOPT, SERVEROPT
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Challenges of Existing Client Sampling Methods
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FedSampling [

* Challenge:
* Difficult to uniformly exploit decentralized samples
* Tracking local sample sizes may also arouse privacy concerns g



FedSampling: Uniform Data Sampling

* Independent and identical data sampling: z; ~ B (%)

e K is the size of samples needed for training, N is estimated total sample size
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FedSampling: Privacy-Preserving Ratio Estimation

* Naive solution: Bypass the challenge by sampling data via a fixed ratio r
* Cause privacy leakage or lead to an biased model update

* Differentially private local response: 1. = x.n, + (1 — x,. ),
* n = min (|D.:,M), x,~B(a), fA,~PM—-1)
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* Unbiased estimation: N = (Zcecrc - /a
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FedSampling: Workflow

* The workflow of FedSampling is mainly different from mainstream FL
methods in data sampling
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FedSampling: Discussions on Utility and Privacy

* Lemma 1: Let p(x) and p(x) denote the probability of a sample x that can
participate in a training step in the centralized learning and FedSampling.
The MSE between p(-) and p(-) asymptotically converges to 0

. 1 oA 2 : Var(r,) _
|c1|‘L“ooE[(p(x) p(x))°] < am ez = 0

* Lemma 2: FedSampling can achieve e-LDP in protecting local sample sizes
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Experiential Datasets and Settings

* Datasets
 FEMNIST: A benchmark image classification datasets for federated learning
* Amazon-Toys: A review sentiment analysis datasets in the toy domain
* Amazon-Beauty: A review sentiment analysis datasets in the beauty domain
* MIND: A text classification dataset based on news corpus

* Data patriation settings
 Amazon datasets: Patriation data into clients based on the user ID
 MIND: Patriation training data based on imbalanced data size distribution (log-normal)
 FEMNIST: Patriation training data based on the class non-IID setting.



Performance Evaluation

- ; MIND Toys Beauty
Model Training Algorithm Macro-F1 Accuracy Macro-F1 Accuracy Macro-Fl1 Accuracy
Centralization 51.52+0.57 71.14+£0.45 | 39.61+1.13 63.71+0.22 | 43.90+£0.97 62.20+0.67
FedAvg 48.11+£0.66 69.234+0.73 | 35.32+0.78 61.63+0.33 | 38.44+1.43 60.75+0.36
Text-CNN FedYogi 49.12+0.71 68.92+0.40 | 35.62+2.34 61.224+0.39 | 38.77+£0.89 60.35+0.91
FedAdagrad 48.55+0.92 67.74=1.89 | 34.69+0.70 60.63+1.36 | 37.20£1.90 60.64+0.70
FedAdam 48.54+0.65 68.22+0.50 | 35.27+1.59 61.35+0.32 | 39.09+£0.80 60.43+1.05
FedSampling 51.33+0.62 71.15+£0.30 | 40.15+1.27 63.41+0.74 | 43.04+0.83 62.96+0.16
Centralization 53.73+£0.62 72.19+0.28 | 41.86+0.96 63.56+0.57 | 44.31+0.70 62.92+0.48
FedAvg 50.46+0.99 70.74+0.52 | 38.68+0.93 60.30+2.06 | 37.82+1.36 60.41+0.27
Transformer FedYogi 50.94+0.59 70.29+0.53 | 37.75+1.87 61.444+0.36 | 38.10£1.07 60.17+0.33
FedAdagrad 50.99+0.68 70.65+0.48 | 38.06+0.61 59.69+1.60 | 38.59+1.56 59.87+0.51
FedAdam 50.69+0.58 70.83+0.28 | 37.58+£0.77 60.59+1.24 | 38.44+1.42 60.65+0.46
FedSampling 53.43+0.57 71.98+0.37 | 41.63+1.12 64.03+0.46 | 43.47+£0.94 62.67L0.60

10



Comparisons under Class Non-1ID Distribution

 Compare different methods on FEMNIST under the class non-IID setting
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FedSampling outperforms baseline methods under
class non-1ID data distribution
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Comparisons with Weighted Sampling

 Compare FedSampling with its ablations on the text classification task
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FedSampling achieves the best performance among its
several ablation methods.
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Influence of Data Size Imbalance degree

——~- Centralization —<= FedAvg —— FedYogi
—e— FedSampling —u— FedAdam —+ - FedAgard

Macro-F1

Distribution Variance: o

With the increasing of imbalance degree, the performance of baselines
quickly degrades, while the performance of FedSampling drops slightly
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Conclusion

* Propose an effective data sampling strategy for federated learning, which
can achieve an uniform data exploitation in a privacy-preserving way
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* Paper: https://arxiv.org/abs/2306.14245
* Code: https://github.com/taoqi98/FedSampling y
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