
FedSampling: A Better Sampling Strategy for
Federated Learning

Tao Qi1, Fangzhao Wu2, Lingjuan Lyu3, Yongfeng Huang1,4,5, Xing Xie2

1Department of Electronic Engineering & BNRist, Tsinghua University, Beijing 100084, China
2Microsoft Research Asia, Beijing 100080, China    

3Sony AI, 1-7-1 Konan Minato-ku Tokyo 108-0075, Japan 
4Zhongguancun Laboratory, Beijing 100094, China

5Institute for Precision Medicine of Tsinghua University, Beijing 102218, China



2

Federated Learning
• A promising privacy-preserving machine learning framework

• Collaborative model learning with decentralized data



• Client sampling is a key step for existing federated learning methods

• Uniform client sampling:

• sampling weight: !! = "
#

• aggregation weight: #!= $!
∑"# $"

• Weighted client sampling:

• sampling weight: !! = $!
∑"# $"

• aggregation weight: #!= "
#

Client Sampling in Federated Learning
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Challenges of Existing Client Sampling Methods
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• Challenge: 

• Difficult to uniformly exploit decentralized samples
• Tracking local sample sizes may also arouse privacy concerns



• Independent and identical data sampling: !!" ∼ ℬ #
$%

• K is the size of samples needed for training, $% is estimated total sample size

FedSampling: Uniform Data Sampling

5



• Naive solution: Bypass the challenge by sampling data via a fixed ratio $
• Cause privacy leakage or lead to an biased model update

• Differentially private local response: $" = &"'" + 1 − &" +'"
• && = min *& , , , -& ∼ ℬ 0 , 1&& ∼ 2(, − 1)

• Unbiased estimation:

FedSampling: Privacy-Preserving Ratio Estimation
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$% = ∑&∈∁ 8& − ")* # ∁
+ /0



• The workflow of FedSampling is mainly different from mainstream FL 

methods in data sampling

FedSampling: Workflow
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• Lemma 1: Let ,(&) and ,̂(&) denote the probability of a sample & that can 

participate in a training step in the centralized learning and FedSampling. 

The MSE between ,(·) and ,̂(·) asymptotically converges to 0

• lim∁ →-; (! - − !̂(-))+ < lim∁ →-
./0(0$)
∁ *% = 0

• Lemma 2: FedSampling can achieve 1-LDP in protecting local sample sizes  

i.f.f. 2 = &'( ) *+
&'( ) *,-.

• exp(B) = max
3,3&,5

67[ℳ $$ :;]
67[ℳ $$& :;]

= #)" *="
")*

FedSampling: Discussions on Utility and Privacy
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• Datasets

• FEMNIST: A benchmark image classification datasets for federated learning
• Amazon-Toys: A review sentiment analysis datasets in the toy domain 
• Amazon-Beauty:  A review sentiment analysis datasets in the beauty domain 
• MIND: A text classification dataset based on news corpus

• Data patriation settings

• Amazon datasets: Patriation data into clients based on the user ID
• MIND: Patriation training data based on imbalanced data size distribution (log-normal)
• FEMNIST: Patriation training data based on the class non-IID setting.

Experiential Datasets and Settings
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Performance Evaluation
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Comparisons under Class Non-IID Distribution

11

FedSampling outperforms baseline methods under 
class non-IID data distribution

• Compare different methods on FEMNIST under the class non-IID setting



Comparisons with Weighted Sampling
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FedSampling achieves the best performance among its 
several ablation methods.

• Compare FedSampling with its ablations on the text classification task



Influence of Data Size Imbalance degree
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With the increasing of imbalance degree, the performance of baselines 
quickly degrades, while the performance of FedSampling drops slightly



Conclusion
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• Propose an effective data sampling strategy for federated learning, which 

can achieve an uniform data exploitation in a privacy-preserving way

• Paper: https://arxiv.org/abs/2306.14245

• Code: https://github.com/taoqi98/FedSampling
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