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• A representative privacy-preserving  machine learning framework 
• Collaboratively learning models from many clients on decentralized data

• Sharing local updates instead of raw data to exchange useful information

Federated Learning
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• Privacy security is an important factor of federated learning
• Although without centralizing data, FL has no privacy security guarantees

Privacy Security of Federated Learning

3• Challenge: Private data can be recovered from shared gradients/models

An example gradient-based attack on federated learning Privacy attack on CIFAR-10



• Local differential privacy: providing theorical privacy guarantee 
• 𝜖- 𝐿𝐷𝑃: Pr ℳ 𝑋 = 𝑌 ≤ 𝑒! Pr[ℳ 𝑋′ = 𝑌] , ∀ 𝑋, 𝑋", 𝑌

• Naive method: adding noise to local updates before sending it to the server

LDP-enhanced Federated Learning

4• Challenge: LDP technique usually faces serious curse of dimensionality



• Shuffle local updates to bypass the difficulty of privacy budget accumulation 
• e.g., model shuffle, parameter shuffle

• Challenge:
• Cause heavy communication costs and online latency

LDP-enhanced Federated Learning
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• Using small data to transfer high-quality knowledge with privacy guarantees

PrivateKT: Differential Private Knowledge Transfer
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• Local model training and knowledge inference

PrivateKT: Differential Private Knowledge Transfer
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• Random response: !𝑦 = 𝑥!𝑦 + 1 − 𝑥! 𝑛! , 𝑥! ∼ ℬ 𝛽 , 𝑛! ∼ ℳ(𝐶)

PrivateKT: Differential Private Knowledge Transfer
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• Knowledge aggregation:

PrivateKT: Differential Private Knowledge Transfer
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• Model distillation based on a data buffer caching previous KD samples

PrivateKT: Differential Private Knowledge Transfer
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• Model self-training on high-confident samples

PrivateKT: Differential Private Knowledge Transfer

11



• Importance sampling:  

PrivateKT: Differential Private Knowledge Transfer
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• Theorem1: !𝐲" is an unbiased estimation of #
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• Theorem2: The MSE of estimation can asymptotically converge to 0
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PrivateKT: Theoretical Analysis

13



Performance Evaluation

14

MNIST MedText X-Ray

Without the protection of LDP, Private can achieve comparable accuracy with baselines

PrivateKT can effectively reduce the performance drop of federated learning under strong LDP protection

w/o 
L
D
P

w/
L
D
P

• Datasets: MNIST, MedText, X-Ray



Privacy-Utility Analysis
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• Evaluate the model accuracy under varying privacy security levels

PrivateKT can still effectively train model parameters under strong privacy guarantees (e.g., 𝜖 = 2)



Ablation Study
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• Verify the effectiveness of the mechanisms of PrivateKT

The three mechanisms  in PrivateKT, i.e., knowledge buffer, importance sampling, and self-training, 
can significantly improve the accuracy of federated learning



Conclusion
• Propose a differential private knowledge transfer framework to 

guarantee the privacy security of federated learning
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