

Microsoft Research 微软亚洲研究院

Differentially Private Knowledge Transfer For Federated Learning

Tao Qi¹, Fangzhao Wu², Chuhan Wu³, Liang He¹, Yongfeng Huang^{1,3,4}, Xing Xie²

¹Department of Electronic Engineering & BNRist, Tsinghua University, Beijing 100084, China

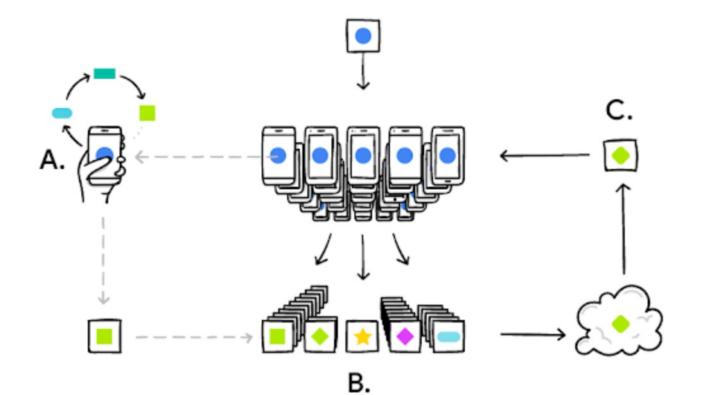
²Microsoft Research Asia, Beijing 100080, China

⁴Zhongguancun Laboratory, Beijing 100094, China

⁵Institute for Precision Medicine of Tsinghua University, Beijing 102218, China

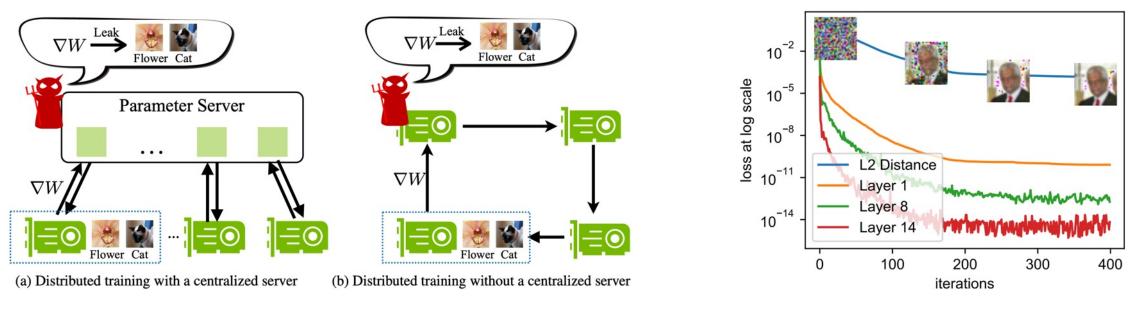
Federated Learning

- A representative privacy-preserving machine learning framework
- Collaboratively learning models from many clients on decentralized data
 - Sharing local updates instead of raw data to exchange useful information



Privacy Security of Federated Learning

- Privacy security is an important factor of federated learning
- Although without centralizing data, FL has no privacy security guarantees



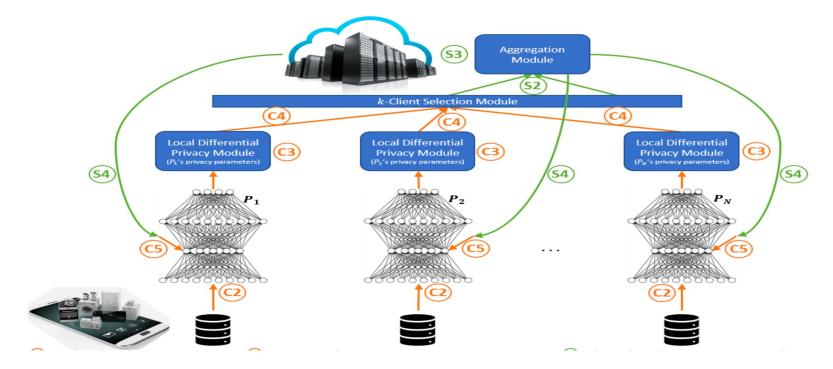
An example gradient-based attack on federated learning

Privacy attack on CIFAR-10

• Challenge: Private data can be recovered from shared gradients/models³

LDP-enhanced Federated Learning

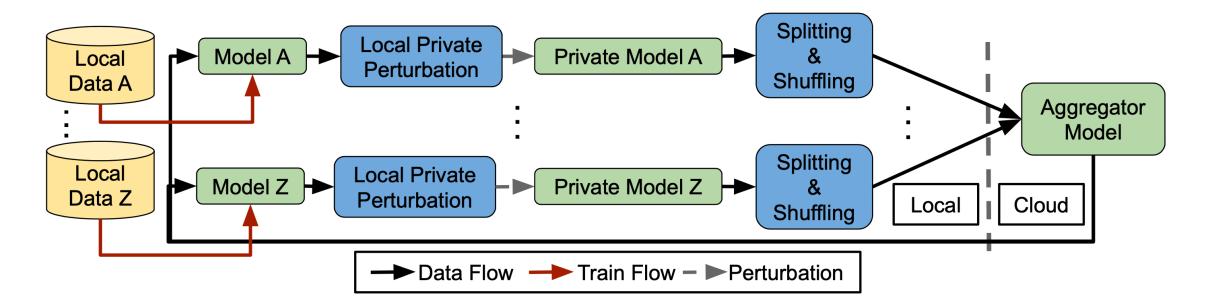
- Local differential privacy: providing theorical privacy guarantee
 - ϵ LDP: $\Pr[\mathcal{M}(X) = Y] \le e^{\epsilon} \Pr[\mathcal{M}(X') = Y], \forall X, X', Y$
- Naive method: adding noise to local updates before sending it to the server



Challenge: LDP technique usually faces serious curse of dimensionality

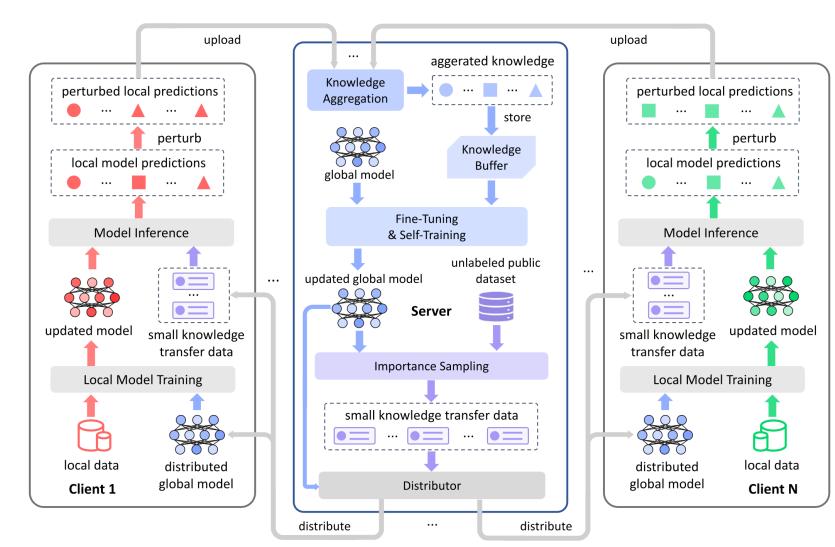
LDP-enhanced Federated Learning

- Shuffle local updates to bypass the difficulty of privacy budget accumulation
 - e.g., model shuffle, parameter shuffle

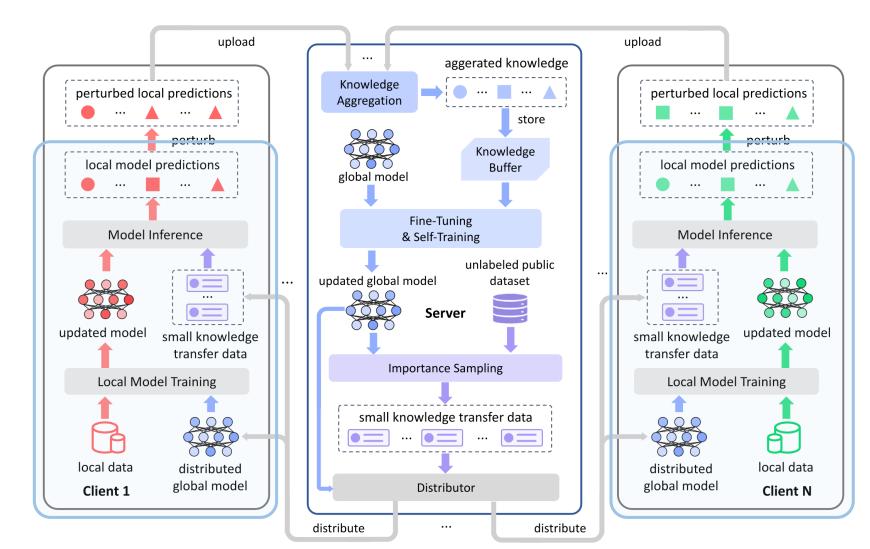


- Challenge:
 - Cause heavy communication costs and online latency

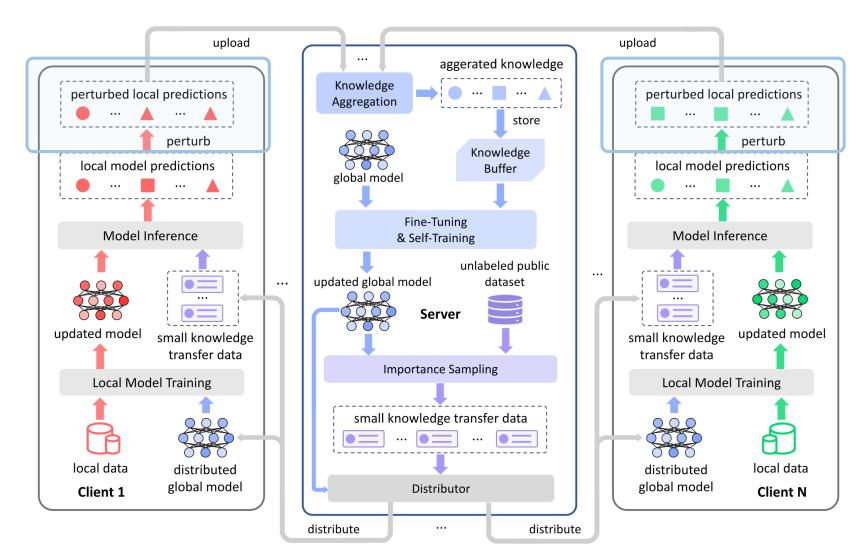
• Using small data to transfer high-quality knowledge with privacy guarantees



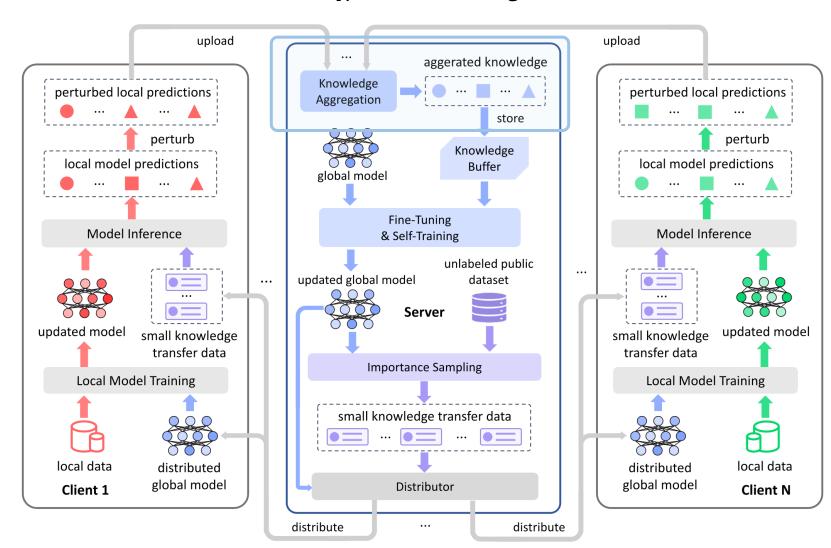
• Local model training and knowledge inference



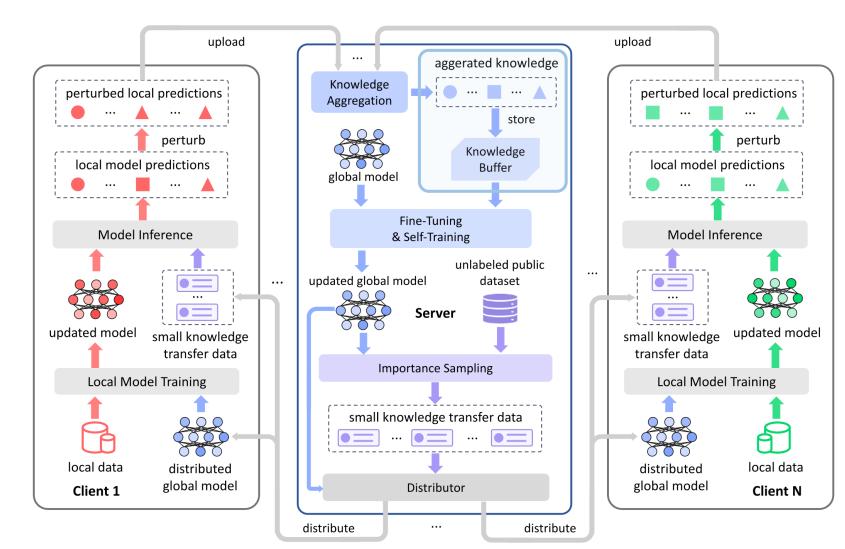
• Random response: $\hat{y} = x_c y + (1 - x_c)n_c$, $x_c \sim \mathcal{B}(\beta)$, $n_c \sim \mathcal{M}(C)$



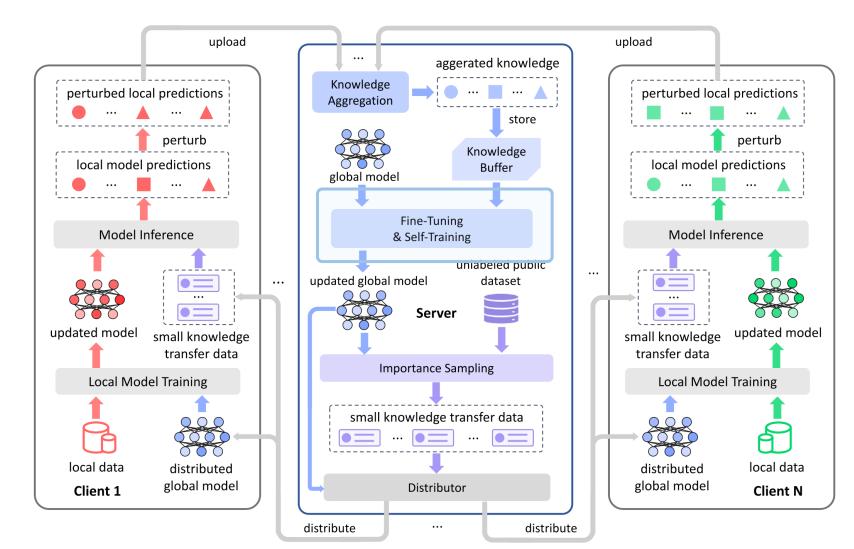
• Knowledge aggregation: $\hat{y}_{i}^{t} = (\frac{1}{N}\sum_{j}^{N}\hat{y}_{j,i}^{t} - \frac{1-\beta}{C}\mathbf{1})/\beta$



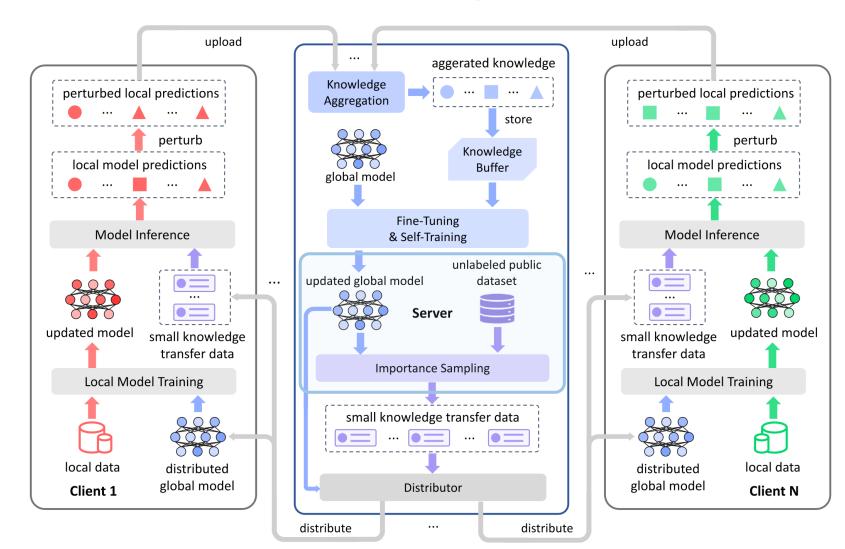
• Model distillation based on a data buffer caching previous KD samples



• Model self-training on high-confident samples



• Importance sampling: $p_i = \exp(-s_i) / \sum_j \exp(-s_j)$



PrivateKT: Theoretical Analysis

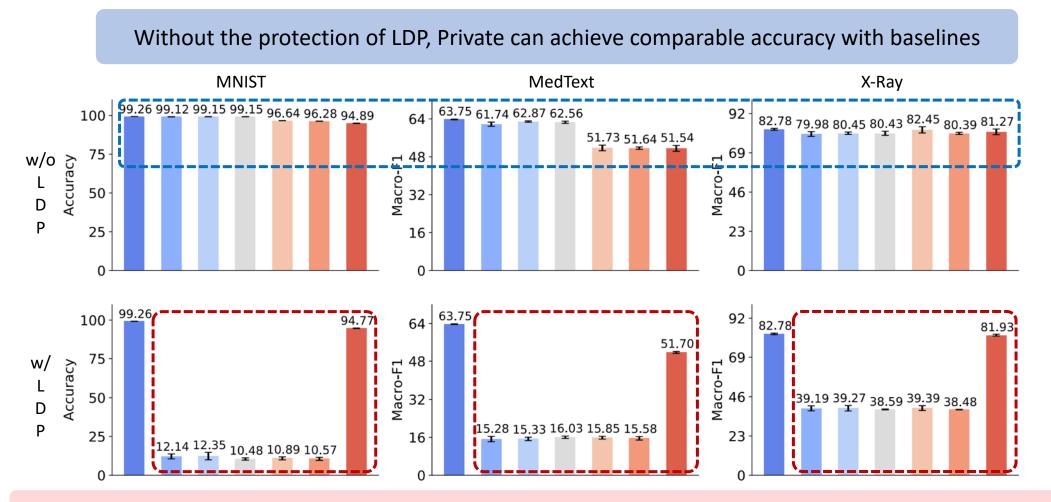
- Theorem1: $\hat{\mathbf{y}}_{i}$ is an unbiased estimation of $\frac{1}{N} \sum_{j}^{N} \mathbf{y}_{j,i}^{t}$ • $\mathbb{E}[\hat{\mathbf{y}}_{i}] = \mathbb{E}\left[\frac{\frac{1}{N} \sum_{j}^{N} \hat{\mathbf{y}}_{j,i}^{t} - \frac{1-\beta}{C} \mathbf{1}}{\beta}\right] = \frac{\frac{1}{N} \sum_{j}^{N} \mathbb{E}[\hat{\mathbf{y}}_{j,i}^{t}] - \frac{1-\beta}{C} \mathbf{1}}{\beta} = \frac{\frac{1}{N} \sum_{j}^{N} \mathbb{E}[\hat{\mathbf{y}}_{j,i}^{t}] - \frac{1-\beta}{C} \mathbf{1}}{\beta} = \frac{1}{N} \sum_{j}^{N} \mathbf{y}_{j,i}^{t}$
- Theorem2: The MSE of estimation can asymptotically converge to 0

•
$$\mathbb{E}\left[(\hat{y}^{i} - \frac{1}{N}\sum_{j}^{N}y_{j,i}^{t})^{2}\right] < \frac{2C^{2}\beta(1-\beta) + \frac{1}{12}C}{N\beta^{2}}$$

• Theorem3: PrivateKT can achieve ϵ -LDP i.f.f. $\beta = \frac{\exp(\frac{\epsilon}{K}) - 1}{\exp(\frac{\epsilon}{K}) - 1 + C}$ • $\exp(\frac{\epsilon}{K}) = \max \frac{\Pr[\hat{y}=c]}{\Pr[\hat{y}'=c]} = \frac{\Pr[\hat{y}=c, y=c]}{\Pr[\hat{y}'=c, y'\neq c]} = \frac{\beta + \frac{1-\beta}{C}}{\frac{1-\beta}{2}} = \frac{(C-1)\beta + 1}{1-\beta}$

Performance Evaluation

• Datasets: MNIST, MedText, X-Ray

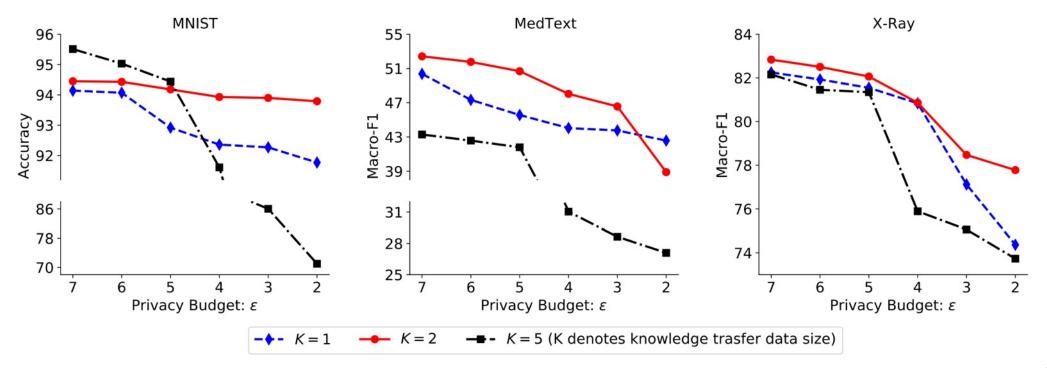


PrivateKT can effectively reduce the performance drop of federated learning under strong LDP protection

Privacy-Utility Analysis

• Evaluate the model accuracy under varying privacy security levels

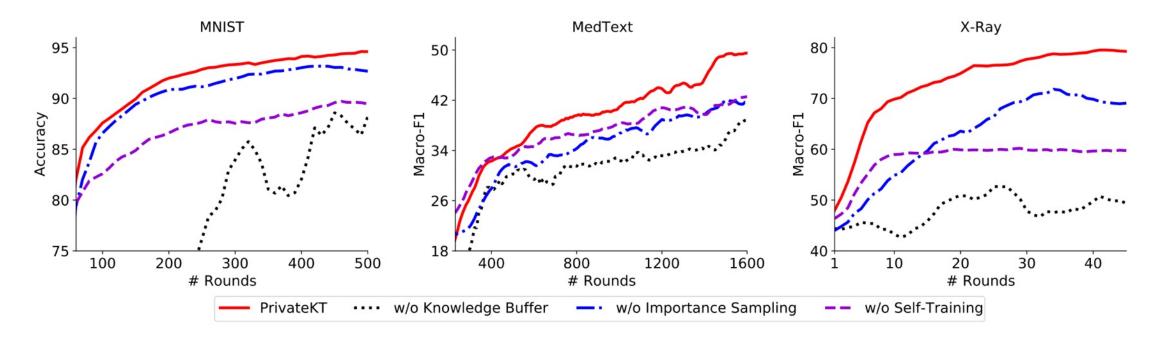
PrivateKT can still effectively train model parameters under strong privacy guarantees (e.g., $\epsilon = 2$)



Ablation Study

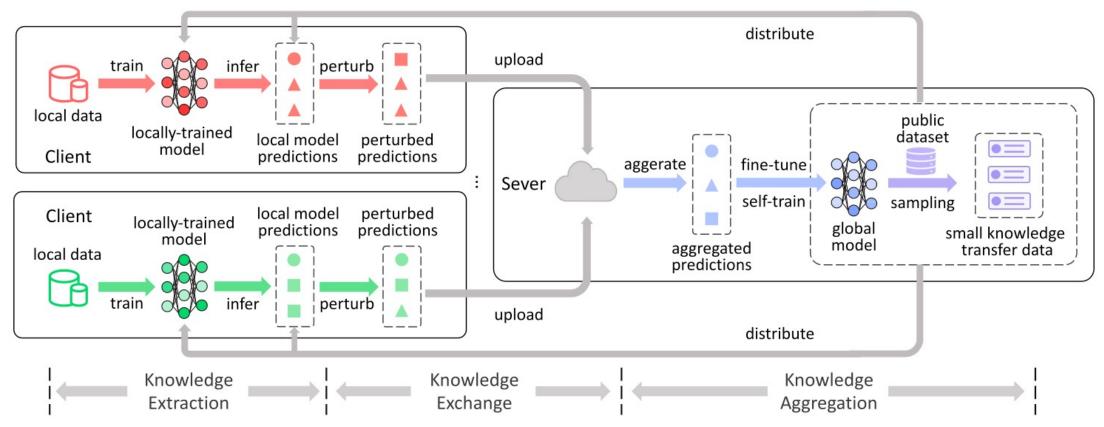
• Verify the effectiveness of the mechanisms of PrivateKT

The three mechanisms in PrivateKT, i.e., knowledge buffer, importance sampling, and self-training, can significantly improve the accuracy of federated learning



Conclusion

• Propose a differential private knowledge transfer framework to guarantee the privacy security of federated learning



Tao Qi

Tsinghua University

taoqi.qt@gmail.com