

ProFairRec: Provider Fairness-aware News Recommendation

Tao Qi¹, Fangzhao Wu², Chuhan Wu¹, Peijie Sun³, Le Wu³, Xiting Wang², Yongfeng Huang¹, Xing Xie²

¹Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

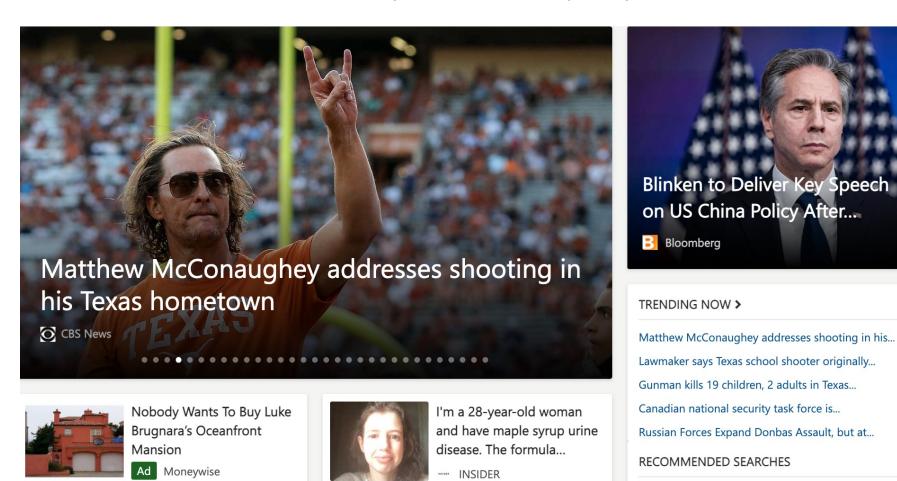
²Microsoft Research Asia, Beijing 100080, China

³Hefei University of Technology, Anhui 230009, China

taoqi.qt@gmail.com

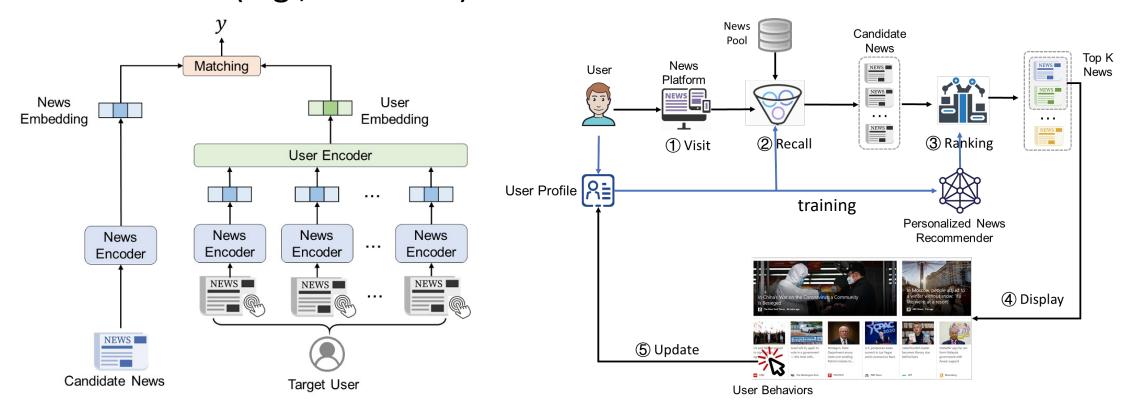
News Recommendation

News recommendation is important for people to obtain information



News Recommendation Methods

• Existing news recommendation methods usually learn models from user behavior data (e.g., click data)

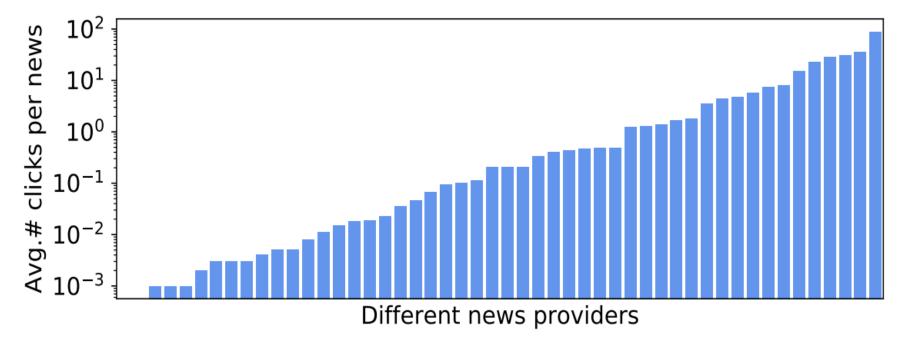


Mainstream news recommendation models.

Framework of news recommendation.

Provider Biases in News Recommendation

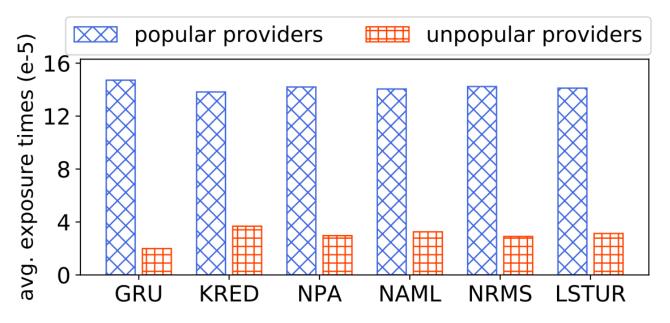
User reading behaviors on different news providers are usually biased



Average #clicks per news from different providers on MIND.

Provider Biases in News Recommendation

News recommendation models can capture provider bias from data



Average exposure number of popular & unpopular providers

Challenges

- Most of the existing news recommendation methods do not consider provider fairness
- Biased model may hurt the diversity of news sources and perspectives

Provider Fairness-aware Recommendation

- Many provider fairness-aware methods are usually based on re-ranking
 - e.g., OFAiR, FairRec, TFROM

$$MMR(u, v, R, S) \stackrel{\triangle}{=} \arg \max_{v \in R \setminus S} [\lambda(rec(v, u) - (1 - \lambda) \sum_{v' \in S} sim(v, v')]$$

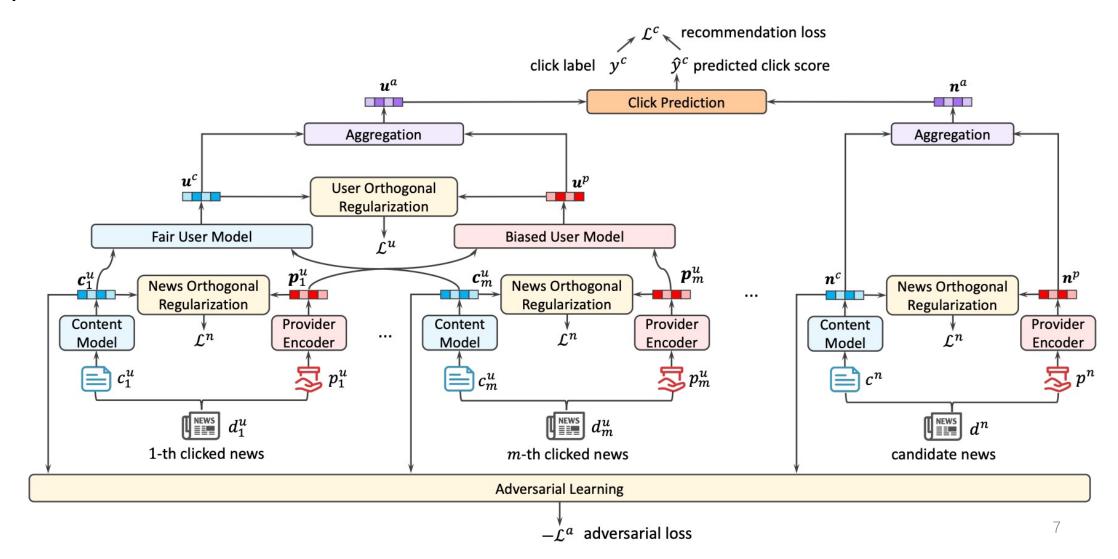
$$xQuAD(u, v, R, S) \stackrel{\triangle}{=} \arg \max_{v \in R \setminus S} [\lambda(rec(v, u) + (1 - \lambda) \max_{v' \in S} \mathbb{1}_{\vec{v} \cap \vec{v'} = \emptyset}],$$

```
1: Initialize allocation \mathcal{B} = (B_1, \dots, B_m) with B_i \leftarrow \emptyset for each
    customer i \in [m].
2: Initiate x \leftarrow m.
3: Initiate round r \leftarrow 0.
4: while true do
         Set r \leftarrow r + 1.
         for i = 1 to m do
              Set p \in \arg \max V_{\sigma(i)}(p')
                        p' \in F_{\sigma(i)}: (S_p \neq 0)
              if p == \emptyset then
                   Set x = i - 1 only if i \neq 1.
                   go to Step 22.
10:
              end if
11:
              Update B_{\sigma(i)} \leftarrow B_{\sigma(i)} \cup p.
12:
              Update F_{\sigma(i)} \leftarrow F_{\sigma(i)} \setminus p.
13:
              Update S_p \leftarrow S_p - 1.
14:
              Update T \leftarrow T - 1.
15:
              if T == 0 then
16:
                   x = i.
17:
18:
                   go to Step 22.
              end if
         end for
21: end while
22: Return \mathcal{B} = (B_1, \dots, B_m), F = (F_1, \dots, F_m) and index x.
```

- Challenges
 - Manually designed re-ranking rules may be sup-optimal for achieving an effective trade-off between performance and fairness

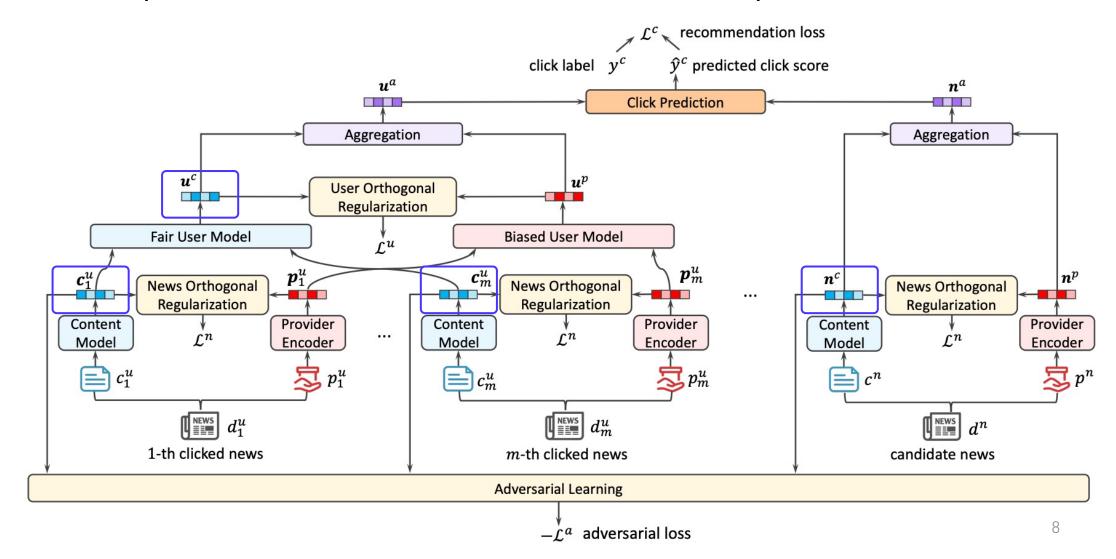
ProFairRec: Overall Framework

• Improve fairness of recommendation models learned from biased data

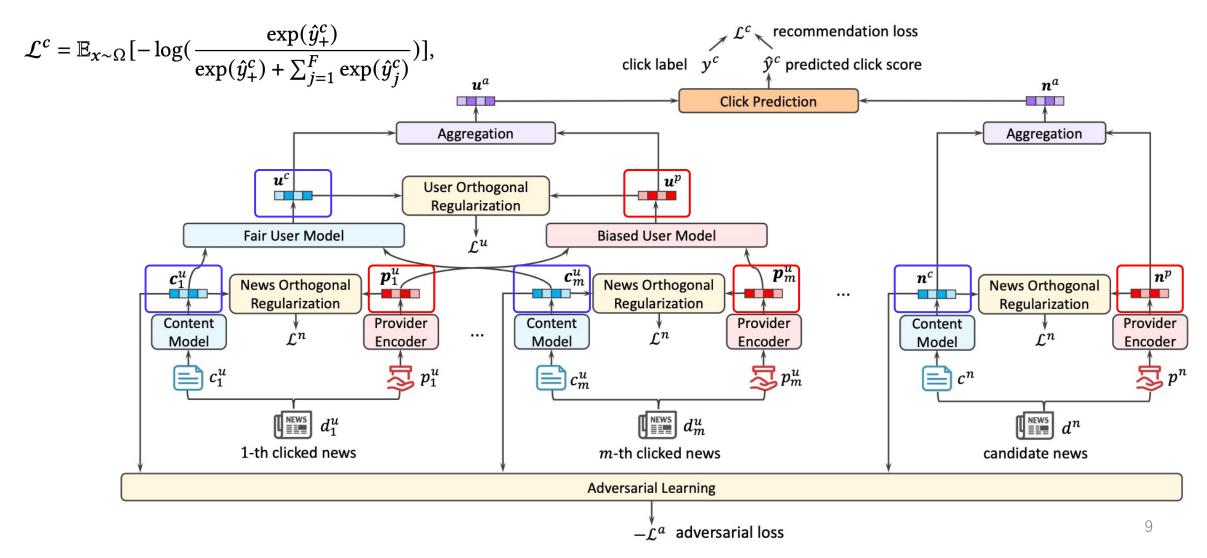


ProFairRec: Overall Framework

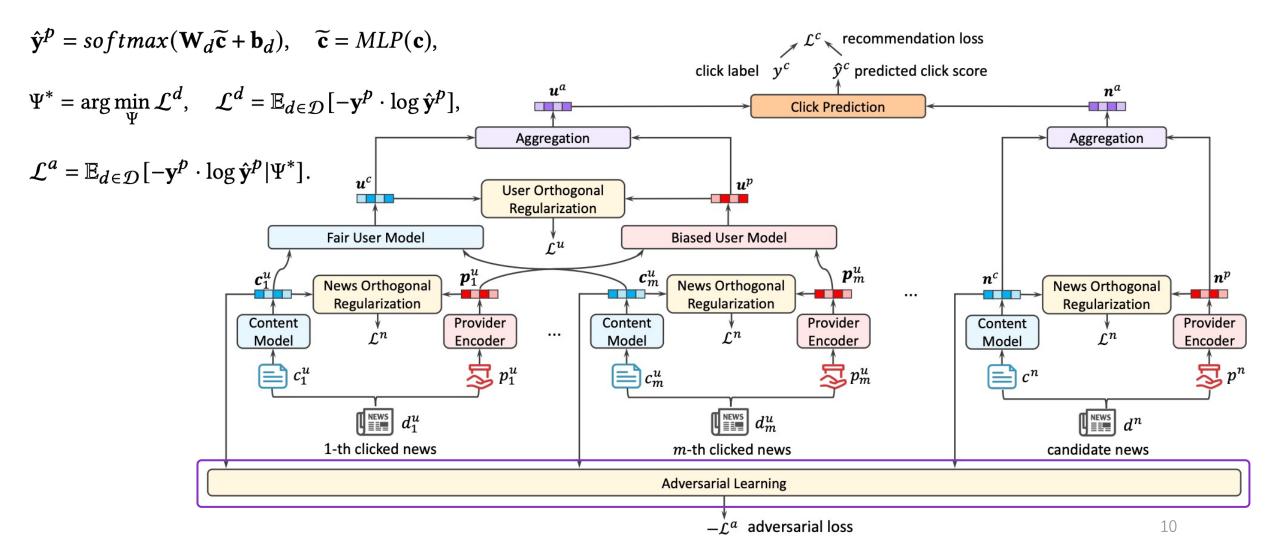
Learn fair representations for news and user to achieve provider fairness



Learning fair representations for news and user to achieve provider fairness



Adversarial learning: prevent fair representations from encoding provider bias



• Adversarial learning: prevent fair representations from encoding provider bias

$$\hat{\mathbf{y}}^p = softmax(\mathbf{W}_d \tilde{\mathbf{c}} + \mathbf{b}_d), \quad \tilde{\mathbf{c}} = MLP(\mathbf{c}),$$

$$\Psi^* = \arg\min_{\Psi} \mathcal{L}^d, \quad \mathcal{L}^d = \mathbb{E}_{d \in \mathcal{D}} [-\mathbf{y}^p \cdot \log \hat{\mathbf{y}}^p],$$

$$\mathcal{L}^a = \mathbb{E}_{d \in \mathcal{D}} [-\mathbf{y}^p \cdot \log \hat{\mathbf{y}}^p | \Psi^*].$$

$$\text{gradient back propagation} \qquad \text{Adversarial Learning}$$

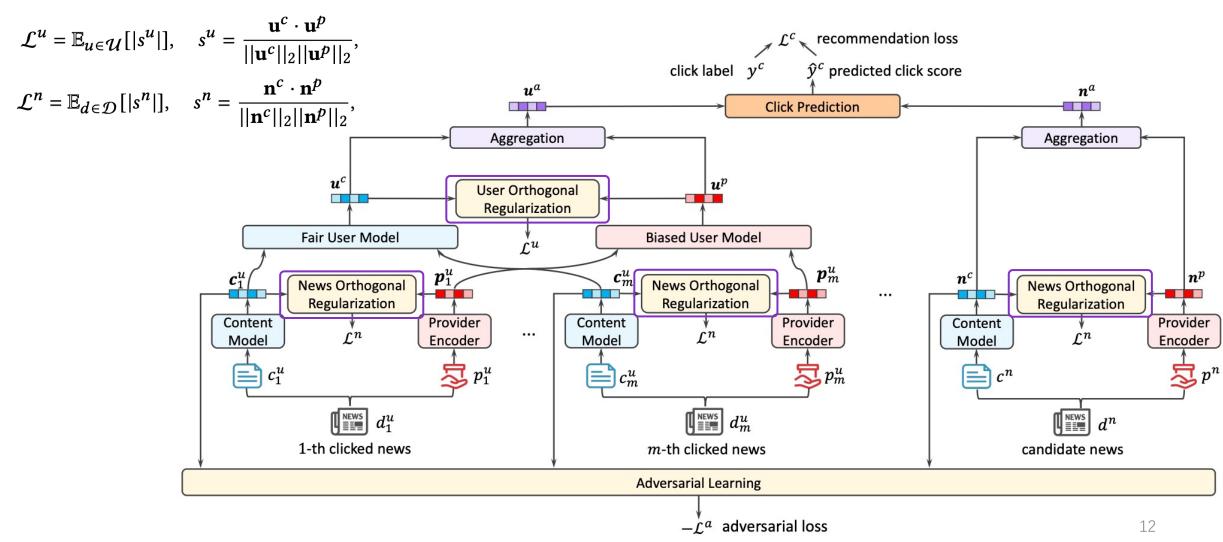
$$\text{gradient back propagation} \qquad \text{Otherwise} \qquad \mathbf{y}^p \qquad \mathcal{L}^d \quad \text{discrimination loss}$$

$$\mathbf{y}^p \qquad \mathcal{L}^d \quad \text{discrimination loss}$$

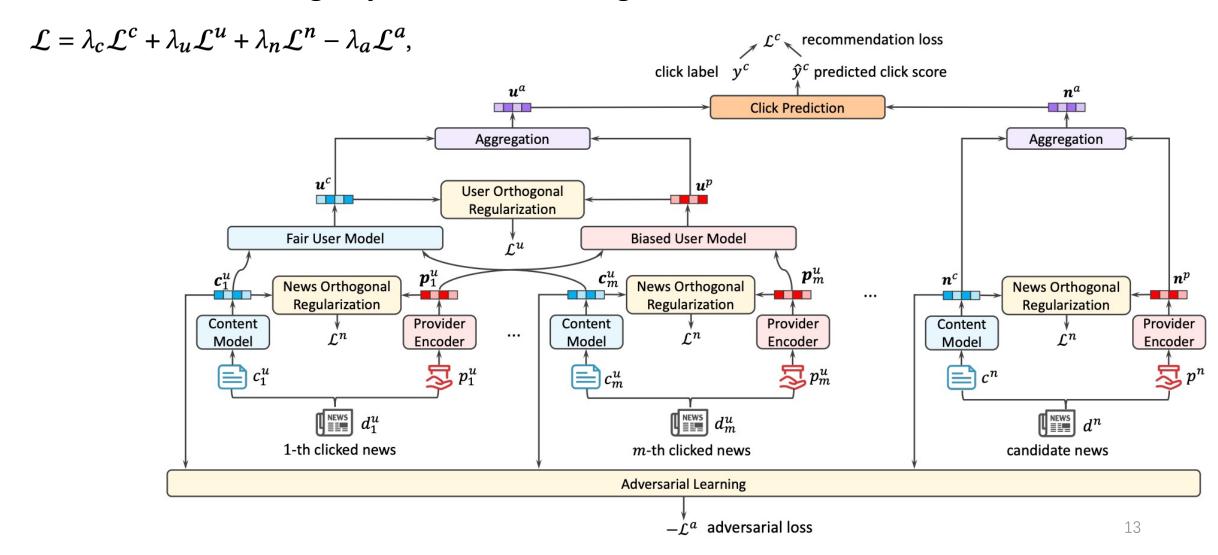
$$\mathbf{y}^p \qquad \mathcal{L}^d \quad \text{discrimination loss}$$

$$\mathbf{y}^p \qquad \mathcal{L}^d \quad \text{discrimination loss}$$

Regularization enforces the orthogonality of fair and biased representations

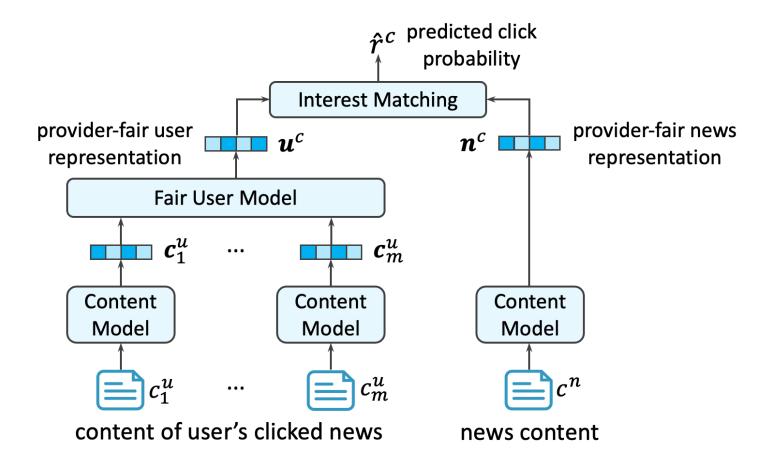


• The overall training objective for learning fair news recommendation models



ProFairRec: Fair News Recommendation

 Only match provider-fair news and user representations to improve provider fairness in news recommendation



Experimental Dataset and Settings

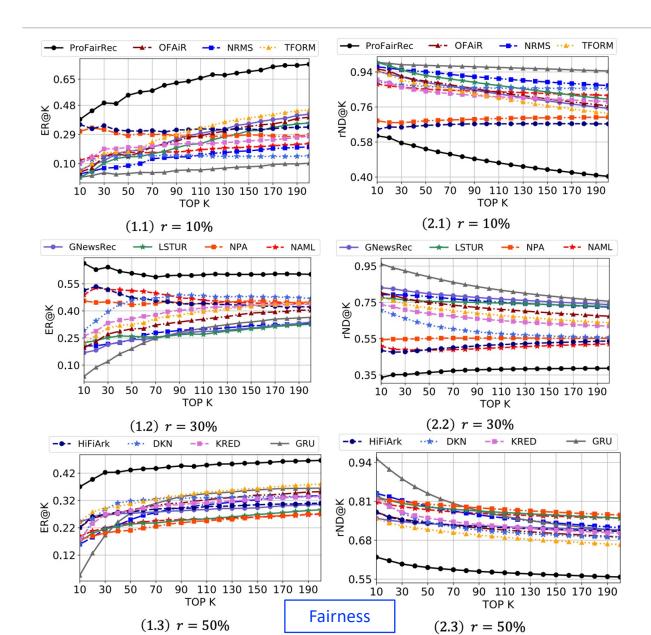
Dataset: MIND

```
# News 130,379 # Providers 1,705
# Users 1,000,000 # Impressions 4,979,946
# Clicks 7,583,733 # Non-clicks 183,124,199
Avg. # words in news titles 11.78
```

- Recommendation metric: AUC, MRR, nDCG@10
- Partition providers into two groups based on popularity
- Fairness metric: measuring the unfairness of exposure opportunities

$$ER@K = \frac{\mathbb{E}_{u \in \mathcal{U}}[|\mathcal{R}_{K}^{u} \cap \mathcal{D}^{+}|/|\mathcal{D}^{+}|]}{\mathbb{E}_{u \in \mathcal{U}}[|\mathcal{R}_{K}^{u} \cap \mathcal{D}^{-}|/|\mathcal{D}^{-}|]}, \qquad rND@K = \frac{1}{Z}\mathbb{E}_{u \in \mathcal{U}}\left[\sum_{n=10,20,...}^{K} \frac{1}{\log_{2}n} \left|\frac{|\mathcal{R}_{n}^{u} \cap \mathcal{D}^{+}|}{n} - \frac{|\mathcal{D}^{+}|}{|\mathcal{D}|}\right|\right]$$

Performance and Fairness



	AUC	MRR	nDCG@10
GRU	66.50 ± 0.04	32.06 ± 0.04	40.45±0.02
DKN	66.70 ± 0.15	32.41 ± 0.11	40.88 ± 0.12
HiFiArk	67.49 ± 0.19	33.04 ± 0.15	41.57 ± 0.15
NAML	67.22 ± 0.20	33.01 ± 0.10	41.54 ± 0.12
NPA	67.13 ± 0.07	32.90 ± 0.07	41.45 ± 0.07
KRED	67.55 ± 0.11	33.27 ± 0.05	41.83 ± 0.05
GNewsRec	68.41 ± 0.10	33.59 ± 0.10	42.24 ± 0.11
LSTUR	68.35 ± 0.10	33.48 ± 0.10	42.16 ± 0.09
NRMS	68.08 ± 0.13	33.43 ± 0.09	42.07 ± 0.10
OFAiR	67.46±0.17	33.08±0.14	41.62±0.17
TFORM	67.53 ± 0.16	33.12 ± 0.13	41.63 ± 0.16
ProFairRec	67.64±0.10	33.08±0.05	41.67±0.07

Performance

Generalization of ProFairRec

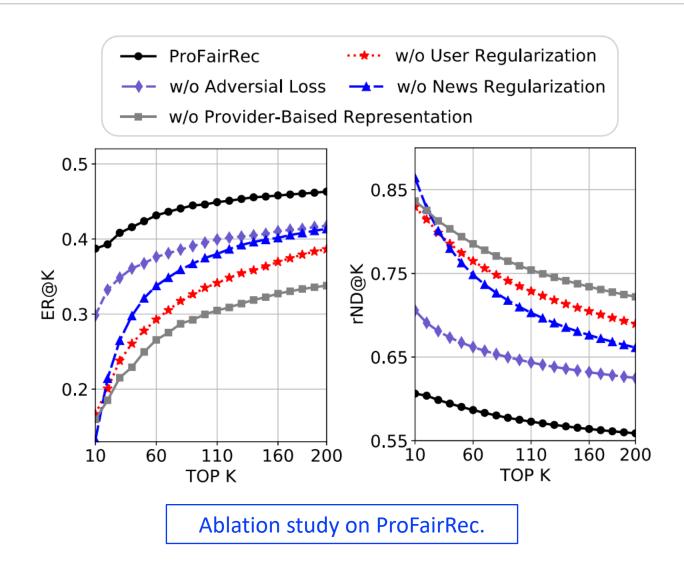
	ER@10	ER@30	ER@50	rND@10	rND@30	rND@50
NAML	0.1646 ± 0.0080	0.2099±0.0107	0.2236 ± 0.0102	0.8316 ± 0.0082	0.8130 ± 0.0077	0.8022±0.0077
+ProFairRec	0.2644 ±0.0329	0.2721 ± 0.0229	0.2822 ± 0.0255	0.7303 ± 0.0332	0.7271 ± 0.0261	0.7232 ± 0.0230
KRED	0.1518±0.0399	0.2271±0.0349	0.2572 ± 0.0321	0.8447±0.0407	0.8138±0.0379	0.7940±0.0356
+ProFairRec	$0.2223 \!\pm\! 0.0777$	$0.2627 \!\pm\! 0.0649$	0.2918 ± 0.0596	0.7730 ± 0.0788	0.7565 ± 0.0734	0.7425 ± 0.0699
NPA	0.1503±0.0358	0.1894±0.0203	0.2086±0.0220	0.8462±0.0364	0.8301±0.0298	0.8189±0.0276
+ProFairRec	0.2444 ± 0.0382	0.2499 ± 0.0361	0.2584 ± 0.0332	0.7506 ± 0.0388	0.7483 ± 0.0373	0.7452 ± 0.0358
NRMS	0.1237 ± 0.0243	0.1991±0.0213	0.2378±0.0195	0.8734±0.0248	0.8423 ± 0.0225	0.8202±0.0212
+ProFairRec	0.3644 ± 0.0847	0.3941 ±0.0689	0.4156 ± 0.0658	0.6295 ± 0.0854	0.6174 ±0.0779	0.6071 ± 0.0738
LSTUR	0.1583±0.0206	0.2086±0.0292	0.2254±0.0326	0.8381±0.0210	0.8174±0.0232	0.8050±0.0257
+ProFairRec	0.3765 ± 0.1067	0.4491 ± 0.0791	0.4865 ± 0.0663	0.6174 ± 0.1070	0.5879 ± 0.0952	0.5668 ± 0.0869

Fairness

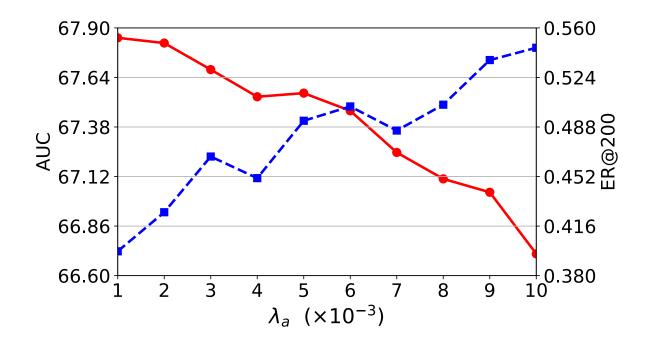
Performance

	AUC	MRR	nDCG@10
NAML	67.22±0.20	33.01±0.10	41.54±0.12
+ProFairRec	67.13 ± 0.08	32.86 ± 0.09	41.38 ± 0.09
KRED	67.55±0.11	33.27±0.05	41.83±0.05
+ProFairRec	67.51 ± 0.19	33.11 ± 0.16	41.71 ± 0.16
NPA	67.13±0.07	32.90±0.07	41.45±0.07
+ProFairRec	67.13 ± 0.03	32.86 ± 0.05	41.39 ± 0.05
NRMS	68.08±0.13	33.43±0.09	42.07±0.10
+ProFairRec	67.64 ± 0.10	33.08 ± 0.05	41.67 ± 0.07
LSTUR	68.35±0.10	33.48±0.10	42.16±0.09
+ProFairRec	67.46 ± 0.11	32.83 ± 0.13	41.35 ± 0.13

Ablation Study on ProFairRec



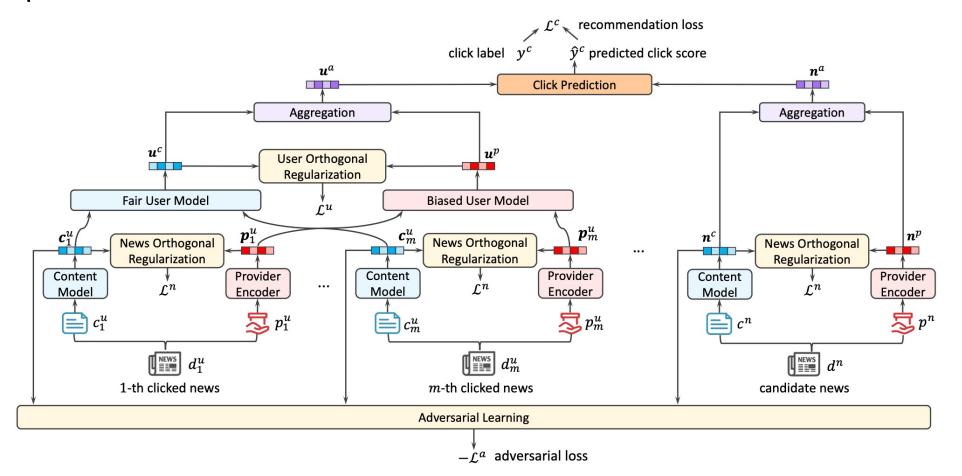
Influence of Adversarial Learning



Trade-off between recommendation performance and fairness

Conclusion

- We are the first to to study the provider fairness problem in news recommendation
- We propose a unified framework to learn provider-fair news representations and user representations from biased data.



Tao Qi taoqi.qt@gmail.com